Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yun-Long Fu, Jia-Lin Ren, ${ }^{\text {a }}$ Zhi-Wei Xu ${ }^{\text {a }}$ and Seik Weng $\mathrm{Ng}^{\text {b }}$ *

${ }^{\mathrm{a}}$ School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=291 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
Disorder in solvent or counterion
R factor $=0.030$
$w R$ factor $=0.071$
Data-to-parameter ratio $=12.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[sesqui(1,2-ethanediammonium) [[aqua(sulfato- κ) cerate(III)]-di- μ-sulfato$\left.\kappa^{3} O, O^{\prime}: O^{\prime \prime} ; \kappa^{4} O, O^{\prime}: O^{\prime \prime}, O^{\prime \prime \prime}\right]$ dihydrate]

The polyanion of the title compound, $\left\{\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{1.5}\left[\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{3^{-}}\right.\right.$ $\left.\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, adopts a layer structure, and the cations and uncoordinated water molecules are located between the layers. One of the cations lies on a center of inversion. The compound is isostructural with the Nd analog, whose structure was recently reported [Liu, Meng, Li, Cui, Wang \& Pang (2005). J. Solid State Chem. 178, 1003-1007].

Comment

As for the previously reported Nd compound, $\left(\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{10}\right)_{1.5}$ $\left[\mathrm{Nd}\left(\mathrm{SO}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Liu et al., 2005) which exhibits intense photoluminescence, the title compound adopts a layer structure in which the cations and uncoordinated water molecules occupy the space between the layers. One of the cations lies on a center of inversion. The report of the Nd compound gives details of only the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding. In the present study of the title compound, (I) (Fig. 1), good data resolution allowed for the calculation of all the hydrogenbonding geometries (Table 2), even though one of the uncoordinated water molecules is disordered over two sites. The Ce center exists in a tricapped trigonal-prismatic coordination geometry (Fig. 2).

(I)

When ethylenediamine is replaced with diethylenetriamine in the synthesis of the Nd compound $\left(\mathrm{C}_{4} \mathrm{~N}_{3} \mathrm{H}_{16}\right)$ $\left[\mathrm{Nd}\left(\mathrm{SO}_{4}\right)_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ is formed; the polyanion exists as a linear chain (Xing et al., 2003).

Experimental

Cerium nitrate hexahydrate ($0.212 \mathrm{~g}, 0.48 \mathrm{mmol}$) was dissolved in water (8 ml) and to the solution were added 0.10 ml of concentrated sulfuric acid (approx. 1.5 mmol) and 0.06 ml of ethylenediamine (approximately 1 mmol). Rod shaped crystals separated from solution after 10 days in 40% yield.

Figure 1
ORTEPII (Johnson, 1976) diagram showing part of the crystal structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radii. The disorder of one of the uncoordinated water molecules ($\mathrm{O} 3 w / \mathrm{O} 3 w^{\prime}$) is shown using dashed lines for one component. In the cation containing C1 the unlabeled atoms are related to the labeled atoms by $2-x, 1-x, 1-$ z. [Symmetry codes: $(\mathrm{i})=x, \frac{3}{2}-y, z-\frac{1}{2},(i i)=1+x, y, z$.].

Figure 2
Tricapped trigonal prismatic geometry of Ce in the polyanion.

Crystal data

$\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{1.5}\left[\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{3}-\right.$	$D_{x}=2.237 \mathrm{Mg} \mathrm{m}^{-3}$
$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	Mo $K \alpha$ radiation
$M_{r}=575.53$	Cell parameters from 3746
Monoclinic, $P 2_{1} / c$	reflections
$a=6.6287(4) \AA$	$\theta=2.2-27.7^{\circ}$
$b=26.629(2) \AA$	$\mu=3.11 \mathrm{~mm}^{-1}$
$c=10.0073(6) \AA$	$T=291(2) \mathrm{K}$
$\beta=104.655(1)^{\circ}$	Parallelepiped, yellow
$V=1709.0(2) \AA^{3}$	$0.27 \times 0.08 \times 0.07 \mathrm{~mm}$
$Z=4$	

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan $S A D A B S$ (Sheldrick, 1996)
$T_{\text {min }}=0.597, T_{\text {max }}=0.812$
10213 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.071$
$S=0.99$
3852 reflections
320 parameters

3852 independent reflections
3254 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-8 \rightarrow 8$
$k=-34 \rightarrow 23$
$l=-12 \rightarrow 13$

All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.039 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\text {max }}=0.74 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.71 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

Ce1-O1	2.393 (3)	Ce1-O11 ${ }^{\text {ii }}$	2.451 (3)
Ce1-O5	2.594 (3)	Ce1-O9	2.554 (3)
Ce1-O6	2.559 (2)	Ce1-O10	2.566 (3)
$\mathrm{Ce} 1-\mathrm{O}^{\text {i }}$	2.583 (2)	Ce1-O1w	2.518 (3)
$\mathrm{Ce} 1-\mathrm{O}^{\text {i }}$	2.575 (3)		
O1-Ce1-O5	78.7 (1)	O6-Ce1-O10	73.5 (1)
O1-Ce1-O6	88.0 (1)	$\mathrm{O} 6-\mathrm{Ce} 1-\mathrm{O} 11^{\text {ii }}$	126.7 (1)
$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{O} 7^{\text {i }}$	142.6 (1)	O6-Ce1-O1w	145.7 (1)
$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{O} 8^{\text {i }}$	146.5 (1)	O7 ${ }^{\text {i }}-\mathrm{Ce} 1-\mathrm{O} 8^{\mathrm{i}}$	54.5 (1)
O1-Ce1-O9	129.6 (1)	$\mathrm{O} 7^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 9$	71.5 (1)
$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{O} 10$	75.5 (1)	$\mathrm{O} 7^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 10$	109.4 (1)
$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{O} 11^{\text {ii }}$	80.9 (1)	$\mathrm{O} 7^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 11^{\text {ii }}$	77.7 (1)
$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{O} 1 w$	76.7 (1)	$\mathrm{O}^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 1 w$	70.1 (1)
O5-Ce1-O6	54.4 (1)	$\mathrm{O} 8{ }^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 9$	78.7 (1)
$\mathrm{O} 5-\mathrm{Ce} 1-\mathrm{O} 7^{\text {i }}$	122.3 (1)	$\mathrm{O} 8{ }^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 10$	133.1 (1)
$\mathrm{O} 5-\mathrm{Ce} 1-\mathrm{O} 8^{\text {i }}$	71.0 (1)	$\mathrm{O} 8^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 11^{\text {ii }}$	76.7 (1)
O5-Ce1-O9	117.8 (1)	$\mathrm{O} 8^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 1 w$	123.4 (1)
O5-Ce1-O10	121.9 (1)	$\mathrm{O} 9-\mathrm{Ce} 1-\mathrm{O} 10$	55.0 (1)
$\mathrm{O} 5-\mathrm{Ce} 1-\mathrm{O} 11^{\text {ii }}$	72.4 (1)	$\mathrm{O} 9-\mathrm{Ce} 1-\mathrm{O} 11^{\text {ii }}$	148.1 (1)
$\mathrm{O} 5-\mathrm{Ce} 1-\mathrm{O} 1 w$	146.4 (1)	$\mathrm{O} 9-\mathrm{Ce} 1-\mathrm{O} 1 w$	95.5 (1)
$\mathrm{O} 6-\mathrm{Ce} 1-\mathrm{O} 7^{\text {i }}$	129.3 (1)	$\mathrm{O} 10-\mathrm{Ce} 1-\mathrm{O} 1{ }^{\text {ii }}$	148.5 (1)
O6-Ce1-O8 ${ }^{\text {i }}$	85.7 (1)	O10-Ce1-O1w	72.9 (1)
O6-Ce1-O9	70.8 (1)	$\mathrm{O} 11{ }^{\text {ii }}-\mathrm{Ce} 1-\mathrm{O} 1 w$	81.5 (1)

Symmetry codes: (i) $x,-y+\frac{3}{2}, z-\frac{1}{2}$; (ii) $x+1, y, z$.

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{O} 2$	0.85 (1)	1.85 (2)	2.673 (4)	161 (6)
$\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots \mathrm{O} 3 w$	0.85 (1)	2.28 (5)	2.94 (3)	134 (6)
$\mathrm{O} 2 w-\mathrm{H} 2 w 1 \cdots \mathrm{O} 3^{\text {iii }}$	0.85 (1)	1.92 (2)	2.755 (5)	168 (6)
$\mathrm{O} 2 w-\mathrm{H} 2 w 2 \cdots \mathrm{O} 4^{\text {iv }}$	0.85 (1)	1.95 (2)	2.778 (4)	164 (6)
$\mathrm{O} 3 w-\mathrm{H} 3 w 1 \cdots \mathrm{O} 2 w$	0.85 (1)	2.11 (2)	2.82 (1)	141 (3)
$\mathrm{O} 3 w-\mathrm{H} 3 w 2 \cdots \mathrm{O} 7^{\mathrm{i}}$	0.85 (1)	2.13 (2)	2.91 (1)	151 (4)
$\mathrm{O} 3 w^{\prime}-\mathrm{H} 3 w 1 \cdots \mathrm{O} 2 w$	0.86 (1)	2.11 (2)	2.96 (2)	169 (4)
$\mathrm{O} 3 w^{\prime}-\mathrm{H} 3 w 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.85 (1)	2.13 (2)	2.90 (1)	151 (4)
$\mathrm{N} 1-\mathrm{H} 1 n 1 \cdots \mathrm{O} 2$	0.85 (1)	2.00 (1)	2.845 (5)	172 (4)
$\mathrm{N} 1-\mathrm{H} 1 n 2 \cdots \mathrm{O} 2 w^{\text {v }}$	0.85 (1)	1.94 (2)	2.750 (5)	160 (4)
$\mathrm{N} 1-\mathrm{H} 1 n 3 \cdots \mathrm{O} 12{ }^{\text {iii }}$	0.85 (1)	2.45 (3)	2.977 (5)	121 (3)
$\mathrm{N} 1-\mathrm{H} 1 n 3 \cdots \mathrm{O} 1 w^{\text {iii }}$	0.85 (1)	2.50 (4)	3.051 (5)	123 (3)
$\mathrm{N} 2-\mathrm{H} 2 n 1 \cdots \mathrm{O}^{\text {ii }}$	0.85 (1)	2.14 (2)	2.954 (5)	161 (4)
$\mathrm{N} 2-\mathrm{H} 2 n 3 \cdots \mathrm{O} 8^{\mathrm{i}}$	0.85 (1)	2.14 (1)	2.976 (5)	171 (4)
$\mathrm{N} 2-\mathrm{H} 2 n 2 \cdots \mathrm{O} 9^{\text {vi }}$	0.85 (1)	2.30 (2)	3.007 (5)	142 (3)
N3-H3n1 \cdots O $4^{\text {i }}$	0.86 (1)	2.00 (1)	2.848 (5)	173 (4)
$\mathrm{N} 3-\mathrm{H} 3 n 2 \cdots \mathrm{O} 10^{\text {vii }}$	0.85 (1)	2.27 (2)	3.080 (5)	160 (4)
N3-H3n3 \cdots O3 $w^{\text {vi }}$	0.85 (1)	2.17 (2)	2.98 (2)	162 (5)

[^0]
metal-organic papers

The uncoordinated O3w molecule is disordered over two positions, and the occupancy of the major and minor components of the O atom refined to 0.60 (5):0.40 (5). The molecule was refined such that the two O atoms shared common H atoms (i.e., the H atoms were ordered).

The diffraction intensities were of sufficiently high quality to allow for the refinement of all H atoms, although they were refined with distance restraints of $\mathrm{C}-\mathrm{H}=0.95$ (1), $\mathrm{N}-\mathrm{H}=\mathrm{O}-$ $\mathrm{H}=0.85(1) \AA$. The $\mathrm{H} \cdots \mathrm{H}$ distance was restrained to 1.55 (1) \AA for the methylene groups, and to 1.39 (1) \AA for the ammonium groups and the water molecules. The displacement parameters of the H atoms were freely refined.

The final difference Fourier map was diffuse as there were no peaks or holes larger than 1 e \AA^{-3}. The map would have had a large peak if the disordered water molecule was not refined as such.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; method used to solve structure: the atomic coordinates of the reported Nd analog were used as
the starting model; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank the Natural Scientific Foundation Committee of Shanxi Province (No. 20041031) and the University of Malaya for generously supporting this study.

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138, Oak Ridge National Laboratory, Tennessee, USA.
Liu, L., Meng, H., Li, G.-H., Cui, Y.-J., Wang, X.-F. \& Pang, W.-Q. (2005). J. Solid State Chem. 178, 1003-1007.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Xing, Y., Liu, Y.-L., Shi, Z., Meng, H. \& Pang, W.-Q. (2003). J. Solid State Chem. 173, 381-385.

[^0]: Symmetry codes: (i) $x,-y+\frac{3}{2}, z-\frac{1}{2}$; (ii) $x+1, y, z$; (iii) $-x+1,-y+1,-z+1$; (iv) $x, y, z-1$; (v) $\quad-x+2,-y+1,-z+1$; (vi) $\quad x+1,-y+\frac{3}{2}, z+\frac{1}{2}$; (vii) $x+1,-y+\frac{3}{2}, z-\frac{1}{2}$.

